0 0 0

Python科学计算基础教程.pdf

暴躁小仙女
3天前 140
我用夸克网盘分享了「Python科学计算基础教程.pdf」,点击链接即可保存。打开「夸克APP」在线查看,支持多种文档格式转换。
Python科学计算基础教程 作者: [印尼] Hemant Kumar Mehta 出版社: 人民邮电出版社 译者: 陶俊杰/陈小莉 出版年: 2016-11 页数: 200 定价: 49.00元 装帧: 平装 丛书: 图灵程序设计丛书·Python系列 ISBN: 9787115436986

内容简介

Python因为其自身的诸多优点而成为科学计算的极佳选择。本书是将Python用于科学计算的实用指南,既介绍了相关的基础知识,又提供了丰富的精彩案例,并为读者总结了最佳实践经验。其主要内容包括:科学计算的基本概念与选择Python的理由,科学工作流和科学计算的结构,科学项目相关数据的各个方面,用于科学计算的API和工具包,如何利用Python的NumPy和SciPy包完成数值计算,用Python做符号计算,数据分析与可视化,并行与大规模计算,等等。

作者简介

作者简介: Hemant Kumar Mehta 博士,专注于分布式计算和科学计算领域,拥有十余年教学、科研和软件开发经验。他是ACM会员、IEEE高级会员以及IACSIT、IAENG和MIR等实验室的高级会员。 译者简介: 陶俊杰 长期从事数据分析工作,酷爱Python,每天都和Python面对面,乐此不疲。本科毕业于北京交通大学机电学院,硕士毕业于北京交通大学经管学院。曾就职于中国移动设计院,目前在京东任职。 陈小莉 长期从事数据分析工作,喜欢Python。本科与硕士毕业于北京交通大学电信学院。目前在中科院从事科技文献与专利分析工作。

网友热评

yjhmelody: 总感觉是不是应该先补习数学(计算方法?)……计算机专业看这本书感觉数学知识严重不足啊?数学专业看这本估计计算机知识严重不足吧?随便翻一下就当导论看过了好了…… scipy,sympy没有用过, numpy,matplotlib,pandas都用过一点点,但没有书里的内容多 Ashitaka: 书里涉及了很多内容,不是为了详细了解,但是可以很快从宏观角度了解各个工具和其中的重点,从这点上来说还是很不错的! 东方小道: 书的内容覆盖面比较广,但大部分内容没有展开来讲。对于科学计算者而言,难以上手python,而对于python开发者来说,又缺少科学计算的详细内容。只能当作导论看看,具体的内容还是去翻Numpy和Scipy的文档吧。

图书目录

第1章 科学计算概况与选择Python的理由  1 1.1 科学计算的定义  2 1.2 科学计算的简单处理流程  3 1.3 科学与工程领域的案例  5 1.4 解决复杂问题的策略  5 1.5 近似、误差及相关统计概念和术语  6 1.5.1 误差分析  7 1.5.2 敏感度、稳定性和准确性  7 1.5.3 后向与前向误差估计  8 1.5.4 误差可以忽略不计吗  8 1.6 计算机算术运算和浮点数  8 1.7 Python编程语言简介  9 1.7.1 Python语言的指导原则  9 1.7.2 为什么用Python做科学计算  11 1.7.3 Python的缺点  13 1.8 小结  13 第2章 科学工作流和科学计算的结构  14 2.1 科学计算的数学部分  14 2.1.1 线性方程组  14 2.1.2 非线性方程组  15 2.1.3 最优化方法  16 2.1.4 内插法  17 2.1.5 外插法  17 2.1.6 数值积分  18 2.1.7 数值微分  18 2.1.8 微分方程  19 2.1.9 随机数生成器  20 2.2 Python科学计算  21 2.2.1 NumPy简介  22 2.2.2 SciPy程序库  22 2.2.3 用pandas做数据分析  23 2.3 IPython交互式编程简介  23 2.3.1 IPython并行计算  24 2.3.2 IPythonNotebook  24 2.4 用SymPy进行符号计算  26 2.4.1 SymPy的主要特点  27 2.4.2 为什么用SymPy  28 2.5 画图程序库  28 2.6 小结  30 第3章 有效地制造与管理科学数据  31 3.1 数据的基本概念  31 3.2 数据存储软件与工具箱  32 3.2.1 文件  33 3.2.2 数据库  33 3.3 常见的数据操作  34 3.4 科学数据的格式  35 3.5 现成的标准数据集  37 3.6 数据生成  41 3.7 模拟数据的生成(构造)  41 3.7.1 用Python的内置函数生成随机数  42 3.7.2 基于统计分布的随机数生成器的设计和实现  45 3.7.3 一个用简单逻辑生成5位随机数的程序  46 3.8 大规模数据集的简要介绍  47 3.9 小结  48 第4章 Python科学计算API  49 4.1 Python数值科学计算  49 4.1.1 NumPy程序包  49 4.1.2 SciPy程序包  52 4.1.3 简单的SciPy程序  54 4.2 SymPy符号计算  57 4.2.1 计算机代数系统  57 4.2.2 通用CAS的特点  57 4.2.3 SymPy设计理念简介  58 4.2.4 SymPy模块  60 4.2.5 简单的范例程序  61 4.3 数据分析和可视化的API和工具  63 4.3.1 用pandas进行数据分析和操作  63 4.3.2 用matplotlib进行数据可视化  64 4.3.3 用IPython实现Python的交互式计算  64 4.3.4 数据分析和可视化的示例程序  65 4.4 小结  67 第5章 数值计算  68 5.1 NumPy的基本对象  68 5.1.1 N维数组对象  68 5.1.2 通用函数对象  72 5.1.3 NumPy的数学模块  74 5.2 SciPy的介绍  75 5.2.1 SciPy的数学函数  75 5.2.2 高级模块/程序包  76 5.3 小结  97 第6章 用Python做符号计算  98 6.1 符号、表达式和基本运算  98 6.2 求解方程  99 6.3 有理数、指数和对数函数  100 6.4 多项式  100 6.5 三角函数和复数  101 6.6 线性代数  101 6.7 微积分  103 6.8 向量  105 6.9 物理模块  106 6.9.1 氢波函数  106 6.9.2 矩阵和Pauli代数  107 6.9.3 一维和三维量子谐振子  107 6.9.4 二次量子化  108 6.9.5 高能物理  108 6.9.6 力学  109 6.10 漂亮的打印功能  111 6.11 密码学模块  113 6.12 输入的句法分析  113 6.13 逻辑模块  114 6.14 几何模块  116 6.15 符号积分  117 6.16 多项式操作  119 6.17 集合  120 6.18 运算的简化和合并  121 6.19 小结  122 第7章 数据分析与可视化  123 7.1 matplotlib  123 7.1.1 matplotlib的架构  124 7.1.2 matplotlib的画图方法  125 7.2 pandas程序库  128 7.2.1 Series  128 7.2.2 DataFrame  129 7.2.3 Panel  130 7.2.4 pandas数据结构的常用函数  131 7.2.5 时间序列与日期函数  137 7.2.6 处理缺失数据  140 7.3 I/O操作  141 7.3.1 处理CSV文件  141 7.3.2 即开即用数据集  144 7.4 IPython  145 7.4.1 IPython终端与系统命令行工具  146 7.4.2 IPythonNotebook  149 7.5 小结  150 第8章 并行与大规模科学计算  151 8.1 用IPython做并行计算  152 8.2 IPython并行计算架构  152 8.3 并行计算示例  154 8.3.1 并行装饰器  155 8.3.2 IPython的魔法函数  155 8.4 IPython的高级特性  157 8.4.1 容错执行  157 8.4.2 动态负载均衡  158 8.4.3 在客户端与引擎之间推拉对象  158 8.4.4 支持数据库存储请求与结果  160 8.4.5 在IPython里使用MPI  161 8.4.6 管理任务之间的依赖关系  162 8.4.7 用AmazonEC2的StarCluster启动IPython  167 8.5 IPython数据安全措施  168 8.5.1 常用并行编程方法  168 8.5.2 在Python中演示基于Hadoop的MapReduce  174 8.5.3 在Python中运行Spark  176 8.6 小结  176 第9章 真实案例介绍  177 9.1 用Python开发的科学计算应用  177 9.1.1 “每个孩子一台笔记本”项目用Python开发界面  177 9.1.2 ExpEYES——科学之眼  180 9.1.3 Python开发的天气预测应用程序  181 9.1.4 Python开发的航空器概念设计工具与API  182 9.1.5 OpenQuake引擎  183 9.1.6 德国西马克公司的能源效率应用程序  184 9.1.7 高能物理数据分析的自动代码生成器  184 9.1.8 Python的计算化学应用  186 9.2 Python开发的盲音触觉识别系统  187 9.2.1 TAPTools空中交通管制工具  187 9.2.2 光能效率检测的嵌入式系统  188 9.3 Python开发的科学计算程序库  189 9.3.1 Tribon公司的船舶设计API  189 9.3.2 分子建模工具箱  189 9.3.3 标准Python程序包  190 9.4 小结  191 第10章 科学计算的最佳实践  192 10.1 方案设计阶段的最佳实践  192 10.2 功能实现阶段的最佳实践  194 10.3 数据管理与应用部署的最佳实践  196 10.4 实现高性能的最佳实践  197 10.5 数据隐私与安全的最佳实践  198 10.6 测试与维护的最佳实践  198 10.7 Python常用的最佳实践  199 10.8 小结  200

Python科学计算基础教程.pdf"网盘下载"

版权说明

1、本站不保存、不存储任何实质资源,以上二维码指向为网盘资源链接,其内容归对应版权方所有
2、如有侵犯版权的情况,请点击下面举报/反馈按钮反馈或发送邮件76556431@qq.com投诉说明情况
3、我们核实后将第一时间删除相关页面内容,谢谢理解和配合

这些人下载过 (12)
  • 爷,给妞笑一个
  • 尽往事一杯酒
  • 走错了路
  • 夏如画
  • fairy(仙女)
  • 如果我开挖掘机你会爱我吗
  • 醉声梦死
  • 别忘了最初的自己
  • 星辰逐梦
  • 浔枫
  • 再会
  • 欲往
最新回复 (0)

    暂无评论

请先登录后发表评论!

返回
请先登录后发表评论!